Unrestricted Harmonic Balance A General Method to Evaluate Periodic Structures in T ime and/or Space of Arbitrary Stability for Non-linear Chemical Reaction and Reaction-Diffusion Systems IV. Extension to Transcendental Functions

نویسنده

  • Friedrich Franz Seelig
چکیده

The method of Unrestricted Harmonic Balance (UHB) as exposed and applied to purely t imedependent systems, stiff systems, and chemical waves in the preceding 3 papers is extended to the case of transcendental functions. So, e.g., exponential functions even in mass action kinetics systems occur, if a wider range of temperature is considered as is the case in continuous stirred tank reactors (CSTR). Here the reaction heat is removed by heat exchangers, but since the volume is in most cases considerable, the system cannot be kept strictly isothermal and instabilities are known to arise. Here the oscillatory case is treated with the method of UHB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unrestricted Harmonic Balance A General Method to Evaluate Periodic Structures in Time and/or Space of Arbi- trary Stability for Non-linear Chemical Reaction and Reaction-Diffusion Systems. I. Theory and Computer Program for Time-dependent Systems

für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution 4.0 International License. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namen...

متن کامل

Unrestricted Harmonic Balance A General Method to Evaluate Periodic Structures in Time and/or Space of Arbitrary Stability in Non-linear Differential Equation Systems V. Investigation of the Truncation Errors in the Case of an Exactly Solvable Non-linear System

The method of Unrestricted Harmonie Balance (UHB) is a generally applicable procedure to determine the Fourier coefficients and constants of motion (frequency, velocity) of non-linear periodic phenomena in time and space and was outlined and applied to various problems in chemistry in preceding papers. Here the truncation error is investigated by comparing the UHB results for various truncation...

متن کامل

A Software for Prediction of Periodic Response of Non-linear Multi Degree of Freedom Rotors Based on Harmonic Balances

It is the purpose of this paper to introduce a computer software that is developed for the analysis of general multi degree of freedom rotor bearing systems with non-linear support elements. A numerical-analytical method for the prediction of steady state periodic response of large order nonlinear rotor dynamic systems is addressed which is based on the harmonic balance technique. By utilizing ...

متن کامل

Dynamic Stability Analysis of a Beam Excited by a Sequence of Moving Mass Particles

In this paper, the dynamic stability analysis of a simply supported beam carrying a sequence of moving masses is investigated. Many applications such as motion of vehicles or trains on bridges, cranes transporting loads along their span, fluid transfer pipe systems and the barrel of different weapons can be represented as a flexible beam carrying moving masses. The periodical traverse of masses...

متن کامل

Thermo-mechanical nonlinear vibration analysis of fluid-conveying structures subjected to different boundary conditions using Galerkin-Newton-Harmonic balancing method

The development of mathematical models for describing the dynamic behaviours of fluid conveying pipes, micro-pipes and nanotubes under the influence of some thermo-mechanical parameters results into nonlinear equations that are very difficult to solve analytically. In cases where the exact analytical solutions are presented either in implicit or explicit forms, high skills and rigorous mathemat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012